A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.

نویسندگان

  • Farag Ibraheem
  • Iffa Gaffoor
  • Qixian Tan
  • Chi-Ren Shyu
  • Surinder Chopra
چکیده

Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an orthologue of the maize gene pericarp color1 (p1). Maize lines with a functional p1 and flavonoid structural genes do not produce foliar 3-deoxyanthocyanidins in response to fungal ingress. To perform a comparative metabolic analysis of sorghum and maize 3-deoxyanthocyanidin biosynthetic pathways, we developed transgenic maize lines expressing the sorghum y1 gene. In maize, the y1 transgene phenocopied p1-regulated pigment accumulation in the pericarp and cob glumes. LC-MS profiling of fungus-challenged Y1-maize leaves showed induction of 3-deoxyanthocyanidins, specifically luteolinidin. Y1-maize plants also induced constitutive and higher levels of flavonoids in leaves. In response to Colletotrichum graminicola, Y1-maize showed a resistance response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor.

In Sorghum bicolor, a group of phytoalexins are induced at the site of infection by Colletotrichum sublineolum, the anthracnose fungus. These compounds, classified as 3-deoxyanthocyanidins, have structural similarities to the precursors of phlobaphenes. Sorghum yellow seed1 (y1) encodes a MYB transcription factor that regulates phlobaphene biosynthesis. Using the candystripe1 transposon mutagen...

متن کامل

Identification and Molecular Characterization of MYB Transcription Factor Superfamily in C4 Model Plant Foxtail Millet (Setaria italica L.)

MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bio...

متن کامل

MYB31/MYB42 Syntelogs Exhibit Divergent Regulation of Phenylpropanoid Genes in Maize, Sorghum and Rice

ZmMYB31 and ZmMYB42 are R2R3-MYB transcription factors implicated in the regulation of phenylpropanoid genes in maize. Here, we tested the hypothesis that the regulatory function of MYB31 and MYB42 is conserved in other monocots, specifically in sorghum and rice. We demonstrate that syntelogs of MYB31 and MYB42 do bind to phenylpropanoid genes that function in all stages of the pathway and in d...

متن کامل

New highly stable dimeric 3-deoxyanthocyanidin pigments from sorghum bicolor leaf sheath.

The growing interest in natural alternatives to synthetic petroleum-based dyes for food applications necessitates looking at nontraditional sources of natural colors. Certain sorghum varieties accumulate large amounts of poorly characterized pigments in their nongrain tissue. We used High Performance Liquid Chromatography-Tandem Mass Spectroscopy to characterize sorghum leaf sheath pigments and...

متن کامل

Study of MYB Transcription Factor Gene Expression in Some Bread Wheat Cultivars of Sistan Region, Iran

Drought, an abiotic stress, considered as one of the factors limiting food resources. The plant responses to adaptive to such a condition are accompanied with changes in the expression pattern of some functional as well as regulatory genes. The MYB proteins include a big family of transcription factors which are highly important in regulating development process and immunizing responses of plan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2015